Supervised Graph Inference
نویسندگان
چکیده
We formulate the problem of graph inference where part of the graph is known as a supervised learning problem, and propose an algorithm to solve it. The method involves the learning of a mapping of the vertices to a Euclidean space where the graph is easy to infer, and can be formulated as an optimization problem in a reproducing kernel Hilbert space. We report encouraging results on the problem of metabolic network reconstruction from genomic data.
منابع مشابه
Inference Driven Metric Learning (IDML) for Graph Construction
Graph-based semi-supervised learning (SSL) methods usually consist of two stages: in the first stage, a graph is constructed from the set of input instances; and in the second stage, the available label information along with the constructed graph is used to assign labels to the unlabeled instances. Most of the previously proposed graph construction methods are unsupervised in nature, as they i...
متن کاملTopics in Graph Construction for Semi-Supervised Learning
Graph-based Semi-Supervised Learning (SSL) methods have had empirical success in a variety of domains, ranging from natural language processing to bioinformatics. Such methods consist of two phases. In the first phase, a graph is constructed from the available data; in the second phase labels are inferred for unlabeled nodes in the constructed graph. While many algorithms have been developed fo...
متن کاملInference Driven Metric Learning for Graph Construction
Graph-based semi-supervised learning (SSL) methods usually consist of two stages: in the first stage, a graph is constructed from the set of input instances; and in the second stage, the available label information along with the constructed graph is used to assign labels to the unlabeled instances. Most of the previously proposed graph construction methods are unsupervised in nature, as they i...
متن کاملLarge-Scale Graph-based Transductive Inference
We consider the issue of scalability of graph-based semi-supervised learning (SSL) algorithms. In this context, we propose a fast graph node ordering algorithm that improves (parallel) spatial locality by being cache cognizant. This approach allows for a near linear speedup on a shared-memory parallel machine to be achievable, and thus means that graph-based SSL can scale to very large data set...
متن کاملConstraint-Driven Rank-Based Learning for Information Extraction
Most learning algorithms for factor graphs require complete inference over the dataset or an instance before making an update to the parameters. SampleRank is a rank-based learning framework that alleviates this problem by updating the parameters during inference. Most semi-supervised learning algorithms also rely on the complete inference, i.e. calculating expectations or MAP configurations. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004